微信关注

北京组合教育科技有限公司

专注高考数学,互联网教育先锋品牌

课程+图书+名师,打造快速提分方案

咨询辅导热线

400-150-9750

热门关键词: 高考数学知识点高考数学题型高考数学真题常见问题

组合教育:高考数学必考知识点之立体几何

返回列表 来源:组合教育 查看手机网址
扫一扫!组合教育:高考数学必考知识点之立体几何扫一扫!
浏览:- 发布日期:2019-07-09 10:50:08【

高考数学立体几何的数学探索©版权所有www.delve.cn考试内容:
数学探索©版权所有www.delve.cn平面及其基本性质.平面图形直观图的画法.
数学探索©版权所有www.delve.cn平行直线.
数学探索©版权所有www.delve.cn直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.
数学探索©版权所有www.delve.cn两个平面的位置关系.
数学探索©版权所有www.delve.cn空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.
数学探索©版权所有www.delve.cn直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.
数学探索©版权所有www.delve.cn直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.
数学探索©版权所有www.delve.cn平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.
数学探索©版权所有www.delve.cn多面体.正多面体.棱柱.棱锥.球.
高考数学立体几何的数学探索©版权所有www.delve.cn考试要求:
数学探索©版权所有www.delve.cn1)掌握平面的基本性质。会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.
数学探索©版权所有www.delve.cn2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念.掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.
数学探索©版权所有www.delve.cn3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.
数学探索©版权所有www.delve.cn4)了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标运算.
数学探索©版权所有www.delve.cn5)掌握空间向量的数量积的定义及其性质:掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.
数学探索©版权所有www.delve.cn6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.
数学探索©版权所有www.delve.cn7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平面垂直的性质定理掌握两个平面平行、垂直的判定定理和性质定理.
数学探索©版权所有www.delve.cn8)了解多面体、凸多面体的概念。了解正多面体的概念.
数学探索©版权所有www.delve.cn9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.
数学探索©版权所有www.delve.cn10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图.
数学探索©版权所有www.delve.cn11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式.
数学探索©版权所有www.delve.cn(考生可在9A)和9B)中任选其一) 

§09. 立体几何  知识要点

一、平面.

1. 经过不在同一条直线上的三点确定一个面.

注:两两相交且不过同一点的四条直线必在同一平面内.

2. 两个平面可将平面分成34部分.(①两个平面平行,②两个平面相交)

3. 过三条互相平行的直线可以确定13个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

[]:三条直线可以确定三个平面,三条直线的公共点有01.

4. 三个平面最多可把空间分成 8 部分.XYZ三个方向)

二、空间直线.

1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内

[]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)

②直线在平面外,指的位置关系:平行或相交

③若直线ab异面,a平行于平面b的关系是相交、平行、在平面.

两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.

在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)

在同一平面内的射影长相等,则斜线长相­--.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)


推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.


高考数学立体几何

5. 两异面直线的距离:公垂线的长度.

空间两条直线垂直的情况:相交(共面)垂直和异面垂直.

高考数学几何图形


一、直线与平面平行、直线与平面垂直.

1. 空间直线与平面位置分三种:相交、平行、在平面内.

2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)

高考数学几何图形


l  三垂线定理的逆定理亦成立.

直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)

直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.

推论:如果两条直线同垂直于一个平面,那么这两条直线平行.

[]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)

②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)

③垂直于同一平面的两条直线平行.(√)

5. 垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.

[]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]

射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

二、平面平行与平面垂直.

1. 空间两个平面的位置关系:相交、平行.

2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)

推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.

[]:一平面间的任一直线平行于另一平面.

3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)

4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.

两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)

注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.

高考数学几何图形

成角比交线夹角一半大,又比交线夹角补角小,一定有2.

成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2.

成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.

五、          棱锥、棱柱.

1. 棱柱.

高考数学几何函数

棱柱具有的性质:

棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.

棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.

过棱柱不相邻的两条侧棱的截面都是平行四边形.

注:棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)

(直棱柱不能保证底面是钜形可如图)

(直棱柱定义)棱柱有一条侧棱和底面垂直.

平行六面体:

定理一:平行六面体的对角线交于一点,并且在交点处互相平分.

[]:四棱柱的对角线不一定相交于一点.

定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.

高考数学几何图形

[]有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)

各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的棱柱才行)

对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)

棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)

2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.

[]:①一个棱锥可以四各面都为直角三角形.

②一个棱柱可以分成等体积的三个三棱锥;

①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.

[]i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)

ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等

iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.

高考数学几何图形

棱锥具有的性质:

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

特殊棱锥的顶点在底面的射影位置:

棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[]i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

高考数学几何图形

高考数学几何图形

高考数学几何图形

高考数学几何图形

高考数学几何图形

立体几何知识要点

一、知识提纲

(一)空间的直线与平面

⒈平面的基本性质  ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

⑴公理四(平行线的传递性).等角定理.

⑵异面直线的判定:判定定理、反证法.

⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行     直线和平面的位置关系、直线和平面平行的判定与性质.

⒋直线和平面垂直

⑴直线和平面垂直:定义、判定定理.

⑵三垂线定理及逆定理.

5.平面和平面平行

两个平面的位置关系、两个平面平行的判定与性质.

6.平面和平面垂直

互相垂直的平面及其判定定理、性质定理.

(二)直线与平面的平行和垂直的证明思路(见附图)

(三)夹角与距离

7.直线和平面所成的角与二面角

⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

面所成的角、直线和平面所成的角.

⑵二面角:①定义、范围、二面角的平面角、直二面角.

②互相垂直的平面及其判定定理、性质定理.

8.距离

⑴点到平面的距离.

⑵直线到与它平行平面的距离.

⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

(四)简单多面体与球

9.棱柱与棱锥

⑴多面体.

⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

正方体;平行六面体的性质、长方体的性质.

⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

⑸直棱柱和正棱锥的直观图的画法.

10.多面体欧拉定理的发现

⑴简单多面体的欧拉公式.

⑵正多面体.

11.

⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

⑵球的体积公式和表面积公式.

高考数学几何图形

1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

5.直线与平面所成的角

斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

6.二面角的求法

1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

4)射影法:利用面积射影公式SScos,其中为平面角的大小,此法不必在图形中画出平面角;

特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

7.空间距离的求法

1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;

高考数学

组合教育《2020年高考一轮复习课程》暑期学习开始了,想提高数学成绩的同学们,快来加入我们吧。

小合微信

添加微信和2020年高考一轮复习课程》一起迎接高三的到来.

组合教育推荐

相关复习指导

最新资讯文章